Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Int Immunopharmacol ; 104: 108516, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1611782

ABSTRACT

Coronavirus disease 2019 (Covid-19) is a worldwide infectious disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). In severe SARS-CoV-2 infection, there is severe inflammatory reactions due to neutrophil recruitments and infiltration in the different organs with the formation of neutrophil extracellular traps (NETs), which involved various complications of SARS-CoV-2 infection. Therefore, the objective of the present review was to explore the potential role of NETs in the pathogenesis of SARS-CoV-2 infection and to identify the targeting drugs against NETs in Covid-19 patients. Different enzyme types are involved in the formation of NETs, such as neutrophil elastase (NE), which degrades nuclear protein and release histones, peptidyl arginine deiminase type 4 (PADA4), which releases chromosomal DNA and gasdermin D, which creates pores in the NTs cell membrane that facilitating expulsion of NT contents. Despite of the beneficial effects of NETs in controlling of invading pathogens, sustained formations of NETs during respiratory viral infections are associated with collateral tissue injury. Excessive development of NETs in SARS-CoV-2 infection is linked with the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) due to creation of the NETs-IL-1ß loop. Also, aberrant NTs activation alone or through NETs formation may augment SARS-CoV-2-induced cytokine storm (CS) and macrophage activation syndrome (MAS) in patients with severe Covid-19. Furthermore, NETs formation in SARS-CoV-2 infection is associated with immuno-thrombosis and the development of ALI/ARDS. Therefore, anti-NETs therapy of natural or synthetic sources may mitigate SARS-CoV-2 infection-induced exaggerated immune response, hyperinflammation, immuno-thrombosis, and other complications.


Subject(s)
Acute Lung Injury/immunology , Anti-Inflammatory Agents/pharmacology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Extracellular Traps/immunology , Acute Lung Injury/prevention & control , Acute Lung Injury/virology , Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , COVID-19/virology , Cytokine Release Syndrome/prevention & control , Cytokine Release Syndrome/virology , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Humans , Immunity, Innate/drug effects , Leukocyte Elastase/antagonists & inhibitors , Leukocyte Elastase/metabolism , Neutrophil Infiltration/drug effects , Phosphate-Binding Proteins/antagonists & inhibitors , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/antagonists & inhibitors , Pore Forming Cytotoxic Proteins/metabolism , Protein-Arginine Deiminase Type 4/antagonists & inhibitors , Protein-Arginine Deiminase Type 4/metabolism , SARS-CoV-2/immunology , COVID-19 Drug Treatment
2.
Viral Immunol ; 34(10): 679-688, 2021 12.
Article in English | MEDLINE | ID: covidwho-1560640

ABSTRACT

The newfound coronavirus disease 2019 (COVID-19), initiated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an international public health concern, threatening the lives of millions of people worldwide. The virus seems to have a propensity to infect older males, especially those with underlying diseases. The cytokine storm following hyperactivated immune responses due to SARS-CoV-2 infection is probably the crucial source of severe pneumonia that leads to acute lung injury, systemic inflammatory response syndrome, or acute respiratory distress syndrome, and finally multiple organ dysfunction syndromes, as well as death in many cases. Several studies revealed that interleukin (IL)-1ß levels were elevated during COVID-19 infection. In addition, the IL-1 cytokine family has a pivotal role in the induction of cytokine storm due to uncontrolled immune responses in COVID-19 infection. This article reviews the role of IL-1 in inflammation and utilization of IL-1 inhibitor agents in controlling the inflammatory outcomes initiated by SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , COVID-19/immunology , Cytokine Release Syndrome/drug therapy , Interleukin-1/immunology , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Acute Lung Injury/pathology , COVID-19/mortality , COVID-19/pathology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Humans , Interleukin-1/antagonists & inhibitors , Multiple Organ Failure/drug therapy , Multiple Organ Failure/immunology , Multiple Organ Failure/pathology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
3.
J Ethnopharmacol ; 285: 114838, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1509996

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Keguan-1, a new traditional Chinese medicine (TCM) prescription contained seven Chinese herbs, is developed to treat coronavirus disease 19 (COVID-19). The first internationally registered COVID-19 randomised clinical trial on integrated therapy demonstrated that Keguan-1 significantly reduced the incidence of ARDS and inhibited the severe progression of COVID-19. AIM OF THE STUDY: To investigate the protective mechanism of Keguan-1 on ARDS, a lipopolysaccharide (LPS)-induced acute lung injury (ALI) model was used to simulate the pathological state of ARDS in patients with COVID-19, focusing on its effect and mechanism on ALI. MATERIALS AND METHODS: Mice were challenged with LPS (2 mg/kg) by intratracheal instillation (i.t.) and were orally administered Keguan-1 (low dose, 1.25 g/kg; medium dose, 2.5 g/kg; high dose, 5 g/kg) after 2 h. Bronchoalveolar lavage fluid (BALF) and lung tissue were collected 6 h and 24 h after i.t. administration of LPS. The levels of inflammatory factors tumour necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1ß, keratinocyte-derived chemokine (KC or mCXCL1), macrophage inflammatory protein 2 (MIP2 or mCXCL2), angiotensin II (Ang II), and endothelial cell junction-associated proteins were analysed using ELISA or western blotting. RESULTS: Keguan-1 improved the survival rate, respiratory condition, and pathological lung injury; decreased the production of proinflammatory factors (TNF-α, IL-6, IL-1ß, KC, and MIP2) in BALF and the number of neutrophils in the lung tissues; and ameliorated inflammatory injury in the lung tissues of the mice with LPS-induced ALI. Keguan-1 also reduced the expression of Ang II and the adhesion molecule ICAM-1; increased tight junction proteins (JAM-1 and claudin-5) and VE-cadherin expression; and alleviated pulmonary vascular endothelial injury in LPS-induced ALI. CONCLUSION: These results demonstrate that Keguan-1 can improve LPS-induced ALI by reducing inflammation and pulmonary vascular endothelial injury, providing scientific support for the clinical treatment of patients with COVID-19. Moreover, it also provides a theoretical basis and technical support for the scientific use of TCMs in emerging infectious diseases.


Subject(s)
Acute Lung Injury , Antiviral Agents/pharmacology , Bronchoalveolar Lavage Fluid , COVID-19 , Drugs, Chinese Herbal/pharmacology , Lung , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Animals , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , COVID-19/complications , COVID-19/immunology , COVID-19/virology , Capsules , Chemokine CXCL2/analysis , Coix , Forsythia , Interleukin-1beta/analysis , Interleukin-6/analysis , Lonicera , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Mice , Mortality , Morus , Peptide Fragments/analysis , Prunus armeniaca , Respiration/drug effects , SARS-CoV-2 , Treatment Outcome , Tumor Necrosis Factor-alpha/analysis
4.
Int J Mol Sci ; 22(21)2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1480801

ABSTRACT

Despite the protracted battle against coronavirus acute respiratory infection (COVID-19) and the rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), no specific and effective drugs have to date been reported. Angiotensin-converting enzyme 2 (ACE2) is a zinc metalloproteinase and a critical modulator of the renin-angiotensin system (RAS). In addition, ACE2 has anti-inflammatory and antifibrosis functions. ACE has become widely known in the past decade as it has been identified as the primary receptor for SARS-CoV and SARS-CoV-2, being closely associated with their infection. SARS-CoV-2 primarily targets the lung, which induces a cytokine storm by infecting alveolar cells, resulting in tissue damage and eventually severe acute respiratory syndrome. In the lung, innate immunity acts as a critical line of defense against pathogens, including SARS-CoV-2. This review aims to summarize the regulation of ACE2, and lung host cells resist SARS-CoV-2 invasion by activating innate immunity response. Finally, we discuss ACE2 as a therapeutic target, providing reference and enlightenment for the clinical treatment of COVID-19.


Subject(s)
Acute Lung Injury/enzymology , Acute Lung Injury/immunology , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Immunity, Innate , SARS-CoV-2/immunology , Acute Lung Injury/virology , COVID-19/complications , COVID-19/enzymology , COVID-19/virology , Humans
5.
Front Immunol ; 12: 705080, 2021.
Article in English | MEDLINE | ID: covidwho-1389187

ABSTRACT

Respiratory viral infections have been a long-standing global burden ranging from seasonal recurrences to the unexpected pandemics. The yearly hospitalizations from seasonal viruses such as influenza can fluctuate greatly depending on the circulating strain(s) and the congruency with the predicted strains used for the yearly vaccine formulation, which often are not predicted accurately. While antiviral agents are available against influenza, efficacy is limited due to a temporal disconnect between the time of infection and symptom development and viral resistance. Uncontrolled, influenza infections can lead to a severe inflammatory response initiated by pathogen-associated molecular patterns (PAMPs) or host-derived danger-associated molecular patterns (DAMPs) that ultimately signal through pattern recognition receptors (PRRs). Overall, these pathogen-host interactions result in a local cytokine storm leading to acute lung injury (ALI) or the more severe acute respiratory distress syndrome (ARDS) with concomitant systemic involvement and more severe, life threatening consequences. In addition to traditional antiviral treatments, blocking the host's innate immune response may provide a more viable approach to combat these infectious pathogens. The SARS-CoV-2 pandemic illustrates a critical need for novel treatments to counteract the ALI and ARDS that has caused the deaths of millions worldwide. This review will examine how antagonizing TLR4 signaling has been effective experimentally in ameliorating ALI and lethal infection in challenge models triggered not only by influenza, but also by other ALI-inducing viruses.


Subject(s)
Acute Lung Injury/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Signal Transduction/immunology , Toll-Like Receptor 4/immunology , Acute Lung Injury/prevention & control , Acute Lung Injury/virology , Antiviral Agents/therapeutic use , COVID-19/epidemiology , COVID-19/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/prevention & control , Humans , Lung/drug effects , Lung/immunology , Lung/virology , Pandemics , SARS-CoV-2/physiology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
6.
JCI Insight ; 6(7)2021 04 08.
Article in English | MEDLINE | ID: covidwho-1383578

ABSTRACT

Proline-glycine-proline (PGP) and its acetylated form (Ac-PGP) are neutrophil chemoattractants generated by collagen degradation, and they have been shown to play a role in chronic inflammatory disease. However, the mechanism for matrikine regulation in acute inflammation has not been well established. Here, we show that these peptides are actively transported from the lung by the oligopeptide transporter, PEPT2. Following intratracheal instillation of Ac-PGP in a mouse model, there was a rapid decline in concentration of the labeled peptide in the bronchoalveolar lavage (BAL) over time and redistribution to extrapulmonary sites. In vitro knockdown of the PEPT2 transporter in airway epithelia or use of a competitive inhibitor of PEPT2, cefadroxil, significantly reduced uptake of Ac-PGP. Animals that received intratracheal Ac-PGP plus cefadroxil had higher levels of Ac-PGP in BAL and lung tissue. Utilizing an acute LPS-induced lung injury model, we demonstrate that PEPT2 blockade enhanced pulmonary Ac-PGP levels and lung inflammation. We further validated this effect using clinical samples from patients with acute lung injury in coculture with airway epithelia. This is the first study to our knowledge to determine the in vitro and in vivo significance of active matrikine transport as a mechanism of modulating acute inflammation and to demonstrate that it may serve as a potential therapeutic target.


Subject(s)
Acute Lung Injury/immunology , COVID-19 , Cefadroxil/pharmacology , Inflammation/metabolism , Oligopeptides , Proline/analogs & derivatives , Symporters , Animals , Anti-Bacterial Agents/pharmacology , Biological Transport, Active/immunology , COVID-19/immunology , COVID-19/metabolism , Cells, Cultured , Chemotactic Factors/immunology , Chemotactic Factors/pharmacology , Chemotaxis, Leukocyte/immunology , Disease Models, Animal , Extracellular Matrix , Extracellular Matrix Proteins/metabolism , Humans , Mice , Oligopeptides/immunology , Oligopeptides/pharmacology , Proline/immunology , Proline/pharmacology , Symporters/antagonists & inhibitors , Symporters/metabolism
7.
Front Immunol ; 12: 669539, 2021.
Article in English | MEDLINE | ID: covidwho-1259346

ABSTRACT

Acute lung injury (ALI) is an intractable disorder associated with macrophages. This bibliometric analysis was applied to identify the characteristics of global scientific output, the hotspots, and frontiers about macrophages in ALI over the past 10 years. We retrieved publications published from 2011 to 2020 and their recorded information from Science Citation Index Expanded (SCI-expanded) of Web of Science Core Collection (WoSCC). Bibliometrix package was used to analyze bibliometric indicators, and the VOSviewer was used to visualize the trend and hotspots of researches on macrophages in ALI. Altogether, 2,632 original articles were reviewed, and the results showed that the annual number of publications (Np) concerning the role of macrophages in ALI kept increasing over the past 10 years. China produced the most papers, the number of citations (Nc) and H-index of the USA ranked first. Shanghai Jiaotong University and INT IMMUNOPHARMACOL were the most prolific affiliation and journal, respectively. Papers published by Matute-Bello G in 2011 had the highest local citation score (LCS). Recently, the keywords "NLRP3" and "extracellular vesicles" appeared most frequently. Besides, researches on COVID-19-induced ALI related to macrophages seemed to be the hotspot recently. This bibliometric study revealed that publications related to macrophages in ALI tend to increase continuously. China was a big producer and the USA was an influential country in this field. Most studies were mainly centered on basic researches in the past decade, and pathways associated with the regulatory role of macrophages in inhibiting and attenuating ALI have become the focus of attention in more recent studies. What is more, our bibliometric analysis showed that macrophages play an important role in COVID-19-induced ALI and may be a target for the treatment of COVID-19.


Subject(s)
Acute Lung Injury/immunology , Bibliometrics , Macrophages/immunology , Acute Lung Injury/etiology , Asia , Brazil , COVID-19/complications , COVID-19/immunology , Europe , Humans , North America , Publishing/trends , SARS-CoV-2
8.
Heart Lung Circ ; 30(6): 786-794, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1217564

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV)-2, which is responsible for coronavirus disease 2019 (COVID-19), uses angiotensin (ANG)-converting enzyme 2 (ACE2) as the entrance receptor. Although most COVID-19 cases are mild, some are severe or critical, predominantly due to acute lung injury. It has been widely accepted that a counter regulatory renin-angiotensin system (RAS) axis including the ACE2/ANG [1-7]/Mas protects the lungs from acute lung injury. However, recent evidence suggests that the generation of protective ANG [1-7] in the lungs is predominantly mediated by proinflammatory prolyl oligopeptidase (POP), which has been repeatedly demonstrated to be involved in lung pathology. This review contends that acute lung injury in severe COVID-19 is characterised by a) ACE2 downregulation and malfunction (inflammatory signalling) due to viral occupation, and b) dysregulation of the protective RAS axis, predominantly due to increased activity of proinflammatory POP. It follows that a reasonable treatment strategy in COVID-19-related acute lung injury would be delivering functional recombinant (r) ACE2 forms to trap the virus. Additionally, or alternatively to rACE2 delivery, the potential benefits resulting from lowering POP activity should also be explored. These treatment strategies deserve further investigation.


Subject(s)
Acute Lung Injury , Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Renin-Angiotensin System/immunology , Signal Transduction , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , COVID-19/metabolism , COVID-19/physiopathology , COVID-19/virology , Down-Regulation , Drug Discovery , Humans , SARS-CoV-2/physiology , Signal Transduction/drug effects , Signal Transduction/immunology
9.
Cells ; 10(4)2021 04 14.
Article in English | MEDLINE | ID: covidwho-1186898

ABSTRACT

Macrophages play an important role in the innate and adaptive immune responses of organ systems, including the lungs, to particles and pathogens. Cumulative results show that macrophages contribute to the development and progression of acute or chronic inflammatory responses through the secretion of inflammatory cytokines/chemokines and the activation of transcription factors in the pathogenesis of inflammatory lung diseases, such as acute lung injury (ALI), acute respiratory distress syndrome (ARDS), ARDS related to COVID-19 (coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)), allergic asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). This review summarizes the functions of macrophages and their associated underlying mechanisms in the development of ALI, ARDS, COVID-19-related ARDS, allergic asthma, COPD, and IPF and briefly introduces the acute and chronic experimental animal models. Thus, this review suggests an effective therapeutic approach that focuses on the regulation of macrophage function in the context of inflammatory lung diseases.


Subject(s)
Acute Lung Injury/pathology , COVID-19/pathology , Macrophages/pathology , Pneumonia/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Distress Syndrome/pathology , Acute Lung Injury/immunology , Animals , Asthma/immunology , Asthma/pathology , COVID-19/immunology , Chronic Disease , Humans , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/pathology , Lung/immunology , Lung/pathology , Macrophages/immunology , Pneumonia/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology
10.
Int J Mol Sci ; 22(4)2021 Feb 20.
Article in English | MEDLINE | ID: covidwho-1090323

ABSTRACT

Severe COVID-19 is characterized by a "cytokine storm", the mechanism of which is not yet understood. I propose that cytokine storms result from synergistic interactions among Toll-like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLR) due to combined infections of SARS-CoV-2 with other microbes, mainly bacterial and fungal. This proposition is based on eight linked types of evidence and their logical connections. (1) Severe cases of COVID-19 differ from healthy controls and mild COVID-19 patients in exhibiting increased TLR4, TLR7, TLR9 and NLRP3 activity. (2) SARS-CoV-2 and related coronaviruses activate TLR3, TLR7, RIG1 and NLRP3. (3) SARS-CoV-2 cannot, therefore, account for the innate receptor activation pattern (IRAP) found in severe COVID-19 patients. (4) Severe COVID-19 also differs from its mild form in being characterized by bacterial and fungal infections. (5) Respiratory bacterial and fungal infections activate TLR2, TLR4, TLR9 and NLRP3. (6) A combination of SARS-CoV-2 with bacterial/fungal coinfections accounts for the IRAP found in severe COVID-19 and why it differs from mild cases. (7) Notably, TLR7 (viral) and TLR4 (bacterial/fungal) synergize, TLR9 and TLR4 (both bacterial/fungal) synergize and TLR2 and TLR4 (both bacterial/fungal) synergize with NLRP3 (viral and bacterial). (8) Thus, a SARS-CoV-2-bacterium/fungus coinfection produces synergistic innate activation, resulting in the hyperinflammation characteristic of a cytokine storm. Unique clinical, experimental and therapeutic predictions (such as why melatonin is effective in treating COVID-19) are discussed, and broader implications are outlined for understanding why other syndromes such as acute lung injury, acute respiratory distress syndrome and sepsis display varied cytokine storm symptoms.


Subject(s)
Acute Lung Injury/immunology , COVID-19/immunology , Cytokine Release Syndrome/immunology , NLR Proteins/immunology , Respiratory Distress Syndrome/immunology , Sepsis/immunology , Toll-Like Receptors/immunology , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/metabolism , Humans , Inflammation/drug therapy , Inflammation/immunology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism , SARS-CoV-2/immunology , Sepsis/drug therapy , Sepsis/metabolism , Toll-Like Receptors/metabolism , COVID-19 Drug Treatment
11.
Phytother Res ; 34(12): 3200-3210, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-964631

ABSTRACT

Rosa rugosa Thunb., is as a medicinal plant known for anti-diabetic, and anti-inflammatory activities. However, the specific active compounds responsible for the individual pharmacological effects of in R. rugosa extract (95% EtOH) remain unknown. Here, we hypothesized that terpenoid structure, the most abundant constituents in R. rugosa extract, are responsible for its anti-inflammatory activity. We investigated the phytochemical substituents (compounds 1-13) and newly purified 11-methoxy polisin A, and 13-methoxy bisaborosaol F using NMR and ESI-MS and to screened their effects on NO production in LPS-induced macrophages. Rugosic acid A (RA) induced to ameliorate NO production, iNOS, and pro-inflammatory cytokines associated with the NF-κB. And, RA suppressed IL-6 secretion and IL-6-mediated STAT3 activation in LPS-mediated inflammation. In addition, RA was evaluated in LPS-mediated acute lung injury (ALI) model similar to acute pneumonia. Our results suggested that RA was suppressed to translocate nuclear NF-κB and IL-6-mediated STAT3 activation. Finally, RA led to amelioration of ALI by decreasing myeloperoxidase (MPO) and inhibiting phosphorylation of NF-κB and STAT3. Our group originally found that R. rugosa extract had new methoxy compounds and RA may be alternative natural agent for acute pneumonia similar to severe acute respiratory syndrome by coronavirus.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/therapeutic use , Interleukin-6/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Rosa , STAT3 Transcription Factor/antagonists & inhibitors , Acute Lung Injury/chemically induced , Acute Lung Injury/immunology , Animals , Anti-Inflammatory Agents/pharmacology , Cell Line , Disease Models, Animal , Female , Humans , Lipopolysaccharides , Mice, Inbred BALB C
13.
Cells ; 9(9)2020 08 24.
Article in English | MEDLINE | ID: covidwho-727401

ABSTRACT

The preservation of cellular homeostasis requires the synthesis of new proteins (proteostasis) and organelles, and the effective removal of misfolded or impaired proteins and cellular debris. This cellular homeostasis involves two key proteostasis mechanisms, the ubiquitin proteasome system and the autophagy-lysosome pathway. These catabolic pathways have been known to be involved in respiratory exacerbations and the pathogenesis of various lung diseases, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and coronavirus disease-2019 (COVID-19). Briefly, proteostasis and autophagy processes are known to decline over time with age, cigarette or biomass smoke exposure, and/or influenced by underlying genetic factors, resulting in the accumulation of misfolded proteins and cellular debris, elevating apoptosis and cellular senescence, and initiating the pathogenesis of acute or chronic lung disease. Moreover, autophagic dysfunction results in an impaired microbial clearance, post-bacterial and/or viral infection(s) which contribute to the initiation of acute and recurrent respiratory exacerbations as well as the progression of chronic obstructive and restrictive lung diseases. In addition, the autophagic dysfunction-mediated cystic fibrosis transmembrane conductance regulator (CFTR) immune response impairment further exacerbates the lung disease. Recent studies demonstrate the therapeutic potential of novel autophagy augmentation strategies, in alleviating the pathogenesis of chronic obstructive or restrictive lung diseases and exacerbations such as those commonly seen in COPD, CF, ALI/ARDS and COVID-19.


Subject(s)
Autophagy/immunology , Betacoronavirus , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Disease Progression , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Acute Lung Injury/immunology , Acute Lung Injury/metabolism , COVID-19 , Coronavirus Infections/virology , Cystic Fibrosis/immunology , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Homeostasis , Humans , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/metabolism , Lysosomes/metabolism , Pandemics , Pneumonia, Viral/virology , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/metabolism , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/metabolism , SARS-CoV-2
14.
Adv Chronic Kidney Dis ; 27(5): 404-411, 2020 09.
Article in English | MEDLINE | ID: covidwho-722379

ABSTRACT

Hypertension emerged from early reports as a potential risk factor for worse outcomes for persons with coronavirus disease 2019 (COVID-19). Among the putative links between hypertension and COVID-19 is a key counter-regulatory component of the renin-angiotensin system (RAS): angiotensin-converting enzyme 2 (ACE2). ACE2 facilitates entry of severe acute respiratory syndrome coronavirus 2, the virus responsible for COVID-19, into host cells. Because RAS inhibitors have been suggested to increase ACE2 expression, health-care providers and patients have grappled with the decision of whether to discontinue these medications during the COVID-19 pandemic. However, experimental models of analogous viral pneumonias suggest RAS inhibitors may exert protective effects against acute lung injury. We review how RAS and ACE2 biology may affect outcomes in COVID-19 through pulmonary and other systemic effects. In addition, we briefly detail the data for and against continuation of RAS inhibitors in persons with COVID-19 and summarize the current consensus recommendations from select specialty organizations.


Subject(s)
Acute Lung Injury/metabolism , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , COVID-19/metabolism , Hypertension/drug therapy , Acute Lung Injury/epidemiology , Acute Lung Injury/immunology , Angiotensin I/immunology , Angiotensin I/metabolism , Angiotensin II/immunology , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/immunology , COVID-19/epidemiology , COVID-19/immunology , Comorbidity , Humans , Hypertension/epidemiology , Hypertension/metabolism , JNK Mitogen-Activated Protein Kinases/immunology , JNK Mitogen-Activated Protein Kinases/metabolism , Lung/immunology , Lung/metabolism , MAP Kinase Signaling System , Peptide Fragments/immunology , Peptide Fragments/metabolism , Protective Factors , Receptors, Coronavirus/immunology , Receptors, Coronavirus/metabolism , Renin-Angiotensin System , Risk Factors , SARS-CoV-2 , Up-Regulation
15.
Nature ; 588(7836): 146-150, 2020 12.
Article in English | MEDLINE | ID: covidwho-690324

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in a pandemic1. The C5a complement factor and its receptor C5aR1 (also known as CD88) have a key role in the initiation and maintenance of several inflammatory responses by recruiting and activating neutrophils and monocytes1. Here we provide a longitudinal analysis of immune responses, including phenotypic analyses of immune cells and assessments of the soluble factors that are present in the blood and bronchoalveolar lavage fluid of patients at various stages of COVID-19 severity, including those who were paucisymptomatic or had pneumonia or acute respiratory distress syndrome. The levels of soluble C5a were increased in proportion to the severity of COVID-19 and high expression levels of C5aR1 receptors were found in blood and pulmonary myeloid cells, which supports a role for the C5a-C5aR1 axis in the pathophysiology of acute respiratory distress syndrome. Anti-C5aR1 therapeutic monoclonal antibodies prevented the C5a-mediated recruitment and activation of human myeloid cells, and inhibited acute lung injury in human C5aR1 knock-in mice. These results suggest that blockade of the C5a-C5aR1 axis could be used to limit the infiltration of myeloid cells in damaged organs and prevent the excessive lung inflammation and endothelialitis that are associated with acute respiratory distress syndrome in patients with COVID-19.


Subject(s)
COVID-19/complications , COVID-19/immunology , Complement C5a/immunology , Inflammation/complications , Inflammation/immunology , Receptor, Anaphylatoxin C5a/immunology , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Acute Lung Injury/prevention & control , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , CD11b Antigen/immunology , CD11b Antigen/metabolism , COVID-19/blood , COVID-19/pathology , Complement C5a/antagonists & inhibitors , Complement C5a/biosynthesis , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Disease Models, Animal , Female , Humans , Inflammation/drug therapy , Inflammation/pathology , Lung/drug effects , Lung/immunology , Lung/pathology , Mice , Mice, Inbred C57BL , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/pathology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/blood , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/prevention & control , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
16.
Front Immunol ; 11: 1626, 2020.
Article in English | MEDLINE | ID: covidwho-646832

ABSTRACT

Most SARS-CoV2 infections will not develop into severe COVID-19. However, in some patients, lung infection leads to the activation of alveolar macrophages and lung epithelial cells that will release proinflammatory cytokines. IL-6, TNF, and IL-1ß increase expression of cell adhesion molecules (CAMs) and VEGF, thereby increasing permeability of the lung endothelium and reducing barrier protection, allowing viral dissemination and infiltration of neutrophils and inflammatory monocytes. In the blood, these cytokines will stimulate the bone marrow to produce and release immature granulocytes, that return to the lung and further increase inflammation, leading to acute respiratory distress syndrome (ARDS). This lung-systemic loop leads to cytokine storm syndrome (CSS). Concurrently, the acute phase response increases the production of platelets, fibrinogen and other pro-thrombotic factors. Systemic decrease in ACE2 function impacts the Renin-Angiotensin-Kallikrein-Kinin systems (RAS-KKS) increasing clotting. The combination of acute lung injury with RAS-KKS unbalance is herein called COVID-19 Associated Lung Injury (CALI). This conservative two-hit model of systemic inflammation due to the lung injury allows new intervention windows and is more consistent with the current knowledge.


Subject(s)
Acute Lung Injury/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Lung/immunology , Pneumonia, Viral/immunology , Severe Acute Respiratory Syndrome/immunology , Systemic Inflammatory Response Syndrome/immunology , Acute Lung Injury/pathology , Acute Lung Injury/therapy , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Humans , Lung/pathology , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/therapy , SARS-CoV-2 , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/therapy , Systemic Inflammatory Response Syndrome/pathology , Systemic Inflammatory Response Syndrome/therapy
19.
Mol Med ; 26(1): 64, 2020 06 29.
Article in English | MEDLINE | ID: covidwho-617273

ABSTRACT

The ubiquiotous nuclear protein HMGB1 is extracellularly released by dying cells or activated innate immunity cells to promote inflammation. Extracellular HMGB1 plays a prominent role in the pathogenesis of acute lung injury of infectious as well as sterile origin including hyperoxia. Excessive amounts of systemic HMGB1 and HMGB1-partner molecule complexes can be retained in the pulmonary circulation indicated by a substantial reduction of HMGB1 plasma levels in arterial versus venous blood. The cholinergic antiinflammatory mechanism ameliorates pulmonary inflammation by inhibiting HMGB1 release and HMGB1 receptor expression. This comprehension was recently reinforced by results reported in Molecular Medicine by Sitapara and coworkers demonstrating that administration of an α7 nicotinic acetylcholine receptor agonist attenuated hyperoxia-induced acute inflammatory lung injury by alleviating the accumulation of HMGB1 in the airways and the circulation. Activating the cholinergic antiinflammatory path might be considered to alleviate severe COVID-19 with or without concurrent oxygen-induced lung injury.


Subject(s)
Acute Lung Injury/prevention & control , Coronavirus Infections/prevention & control , HMGB1 Protein/antagonists & inhibitors , Neuroimmunomodulation/drug effects , Nicotinic Agonists/therapeutic use , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Animals , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2
20.
Paediatr Respir Rev ; 35: 20-24, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-593671

ABSTRACT

Since the initial description in 2019, the novel coronavirus SARS-Cov-2 infection (COVID-19) pandemic has swept the globe. The most severe form of the disease presents with fever and shortness of breath, which rapidly deteriorates to respiratory failure and acute lung injury (ALI). COVID-19 also presents with a severe coagulopathy with a high rate of venous thromboembiolism. In addition, autopsy studies have revealed co-localized thrombosis and inflammation, which is the signature of thromboinflammation, within the pulmonary capillary vasculature. While the majority of published data is on adult patients, there are parallels to pediatric patients. In our experience as a COVID-19 epicenter, children and young adults do develop both the coagulopathy and the ALI of COVID-19. This review will discuss COVID-19 ALI from a hematological perspective with discussion of the distinct aspects of coagulation that are apparent in COVID-19. Current and potential interventions targeting the multiple thromboinflammatory mechanisms will be discussed.


Subject(s)
Acute Lung Injury/blood , Coronavirus Infections/blood , Inflammation/blood , Pneumonia, Viral/blood , Thrombosis/blood , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Acute Lung Injury/physiopathology , Anticoagulants/therapeutic use , Antithrombins/therapeutic use , Betacoronavirus , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/immunology , Blood Coagulation Disorders/physiopathology , COVID-19 , Capillaries/immunology , Capillaries/physiopathology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Endothelium, Vascular/immunology , Endothelium, Vascular/physiopathology , Factor Xa Inhibitors/therapeutic use , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/physiopathology , Pandemics , Platelet Activation , Platelet Aggregation Inhibitors/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Pulmonary Embolism/blood , Pulmonary Embolism/immunology , Pulmonary Embolism/physiopathology , SARS-CoV-2 , Thrombin/immunology , Thrombin/metabolism , Thrombosis/drug therapy , Thrombosis/immunology , Thrombosis/physiopathology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL